Elevational variation in adult body size and growth rate but not
in metabolic rate in the tree weta Hemideina crassidens




these studies are conducted across a single elevational or lati-
tudinal gradient (reviewed by Chown and Gaston, 1999). Here,
we explore MCA in the context of multiple, independent, high-el-
evation populations of the same species, predicting a consistent
replicated response between contrasting elevations.

Evidence suggests that a larger body and slower growth is adap-
tive in colder environments (see below, Angilletta et al., 2004 ), and
might be coupled with elevated metabolic rates to sustain activity
and allow for completion of life cycles in the shorter growing sea-
sons characteristic of high-elevation environments. Intraspeci“c
variation in body size has been reported for elevational gradients
with a strong relationship between individual size and environ-
ment (Angilletta and Dunham, 2003 ). In general, animals found
in colder climates tend to be larger as adults than their conspeci“cs
in warmer climates. This pattern holds when either altitude or lati-
tude is a proxy for environmental temperature ( Ashton, 2002;
Ashton and Feldman, 2003 ).

Models of ectotherm life-history evolution predict larger adult
size in cold environments that retard growth (  Atkinson, 1994;
Berrigan and Charnov, 1994 ). Furthermore, individuals from colder
environments are often larger at maturity than those from warmer
environments when reared in common garden conditions; e.g.,
Drosophila melanogaster reared at lower temperatures were larger
than high-temperature lines (reviewed by  Partridge and French,
1996). To reach larger body sizes in cold environments, individuals
must prolong growth and delay reproduction relative to those in
warm environments. Such delayed maturation is adaptive when
a colder environment enables an increase in fecundity or higher
survival rates ( Stearns, 1992; Angilletta et al., 2004 ).

The Wellington tree weta, Hemideina crassidens (Orthoptera:
Anostostomatidae), is a large, "ightless, nocturnal insect endemic
to New Zealand. It is found in the southern third of the North
Island and on the west coast of the South Island ( Bulgarella et al.,
2014). Some populations are isolated on mountaintops or in low-
elevation areas while others are continuously distributed from
sea level to 1500 ma.s.l. (Trewick and Morgan-Richards, 1995,
2014). Tree weta hide in tree holes during the daytime, emerging
at night to feed mainly on the leaves of trees and shrubs (  Wehi
etal., 2013). Adult H. crassidensare sexually dimorphic: males have
enlarged heads and mandibles that they use to compete for harems
of 1...13 females (Asher, 1977; Field and Deans, 2001; Kelly, 2005 ).
Individuals of this species from one high-elevation population had
longer tibiae and larger body mass than individuals from a low-el-
evation site, whether collected as adults, or raised from the 3rd or
4th instar in captivity (  Minards et al., 2014 ).

Studies of the physiology of New Zealand montane insects have
centred on the alpine weta Hemideina maori and the alpine cock-
roach Celatoblatta quinquemaculata (reviewed by Wharton, 2011 ).
In contrast to H. maori, H. crassidensfeatures in only two thermal
biology studies so far ( Sinclair et al., 1999; Minards et al., 2014 ).
New Zealand sits on the continental boundary of the Paci“c and
Indo-Australian plates the activity of which resulted in the forma-
tion of the Southern Alps and the “rst widespread alpine habitats
(about 5Ma; Trewick and Bland, 2012 ). North Island mountains
are of volcanic origin and more recent (<1 Ma). About 75% of
New Zealand is >200 m a.s.l. with 19 peaks exceeding 3000 m a.s.l.
(Wallis and Trewick, 2009 ). Consequently, there are records of
repeated invasions of alpine zones in multiple taxa (reviewed by
Buckley et al., 2014 ) and therefore New Zealand provides an excel-
lent opportunity to explore the consequences of adaptation to the
alpine zone.

We hypothesise that local selection at high elevations leads to
MCA. Thus we expect to “nd consistently elevated metabolic rates
in high-elevation populations when compared to conspeci‘c weta
from low elevations. Another hypothesis holds that larger adult
body size is an advantage at higher elevations, leading to selection

for faster growth rates (perhaps because of increased growth ef*-
ciency; Angilletta and Dunham, 2003 ). If this phenotypic pattern
is controlled by genetically-determined differences we predict that
high-elevation individuals will grow faster when reared under
common-garden conditions at a constant temperature (reviewed
by Arendt, 1997; Angilletta et al., 2002 ).

2. Materials and methods
2.1. Animal collection and care

We collected weta by searching tree holes during daytime
between March and December 2011 (New Zealand Department
of Conservation collection permits WE-31465-FAU, NM-32444-
FAU, TW-32116-FAU and WA-22197-RES, where appropriate).
Adult weta ( n =55, 33 female and 22 male) from seven populations
were included in the metabolic rate trials (  Fig. 1). Juvenile weta
(n =138, 60 female and 78 male) from nine localities were included
in the growth trials, and their adult size compared after their “nal
moult. Our sampling represented populations with different eleva-
tional (9...1171 m a.s.l) distributions ( Fig. 1). Two pairs of weta
populations in our study are continuously distributed from low
to high elevation. On the North Island of New Zealand, the weta
from Nga Manu (low elevation) and Mt. Hector (high elevation)
are part of a contiguous population, as are those from Graham river
(low elevation) and Flora (high elevation) in the South Island. All
other populations studied are located on the North Island of New
Zealand (Fig. 1).

We used previously-published 480 bp mitochondrial DNA
(mtDNA) cytochrome b sequences ( Bulgarella et al., 2014 ) to deter-
mine the extent of haplotype sharing among 92 individuals from
the nine sampled populations by constructing a haplotype network
using the median-joining algorithm in the software Network 4.1
(Bandelt et al., 1999 ; Fig. 1).

Weta were transported to the laboratory where they were kept
in individual plastic containers (17 17 9 cm) with wire mesh in
the lids in a temperature-controlled room at 14+ 1 C with a
14:10-h light:dark cycle. The weta were provided with a roost hole
made from hollowed "ax stalk ( Phormium tenax), and moisture via
damp paper-towel. Food was leaves of mahoe ( Melicytus
rami’orus ), taupata (Coprosma repen3d and miro ( Prumnopitys
ferruginea) provided ad libitum. These three plants species are
browsed by tree weta in the wild (  Grif‘n et al., 2011; Dewhurst,



The oxygen levels in the testing cylinder did not drop below
19 kPa. The O, sensing system was calibrated for multiple tem-
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trial temperature. Most intraspeci“c studies of MCA lack informa-
tion about population differentiation (it might indicate the direc-

tion of evolved trait changes), and fail to examine whether
phenotypic plasticity could explain the observed patterns ( Clarke,
1991, 1993; Terblanche et al., 2009 ). In our study, mitochondrial



energy for maintenance during physical inactivity ( Lindgren and
Laurila, 2009; Gaitan-Espitia and Nespolo, 2014 ).

H. crassidenspresented low Qo values that might be related to
their nocturnal habits. Tree weta are active and forage at night
when microclimate temperatures are cooler and more homoge-
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